Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.839
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(17): e2317680121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38635626

RESUMO

The endosomal sorting complex required for transport (ESCRT) machinery constitutes multisubunit protein complexes that play an essential role in membrane remodeling and trafficking. ESCRTs regulate a wide array of cellular processes, including cytokinetic abscission, cargo sorting into multivesicular bodies (MVBs), membrane repair, and autophagy. Given the versatile functionality of ESCRTs, and the intricate organizational structure of the ESCRT machinery, the targeted modulation of distinct ESCRT complexes is considerably challenging. This study presents a pseudonatural product targeting IST1-CHMP1B within the ESCRT-III complexes. The compound specifically disrupts the interaction between IST1 and CHMP1B, thereby inhibiting the formation of IST1-CHMP1B copolymers essential for normal-topology membrane scission events. While the compound has no impact on cytokinesis, MVB sorting, or biogenesis of extracellular vesicles, it rapidly inhibits transferrin receptor recycling in cells, resulting in the accumulation of transferrin in stalled sorting endosomes. Stalled endosomes become decorated by lipidated LC3, suggesting a link between noncanonical LC3 lipidation and inhibition of the IST1-CHMP1B complex.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte , Endossomos , Endossomos/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Transporte Proteico , Corpos Multivesiculares/metabolismo
2.
PLoS Pathog ; 20(3): e1012103, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38489378

RESUMO

Alphacoronaviruses are the primary coronaviruses responsible for causing severe economic losses in the pig industry with the potential to cause human outbreaks. Currently, extensive studies have reported the essential role of endosomal sorting and transport complexes (ESCRT) in the life cycle of enveloped viruses. However, very little information is available about which ESCRT components are crucial for alphacoronaviruses infection. By using RNA interference in combination with Co-immunoprecipitation, as well as fluorescence and electron microscopy approaches, we have dissected the role of ALIX and TSG101 for two porcine alphacoronavirus cellular entry and replication. Results show that infection by two porcine alphacoronaviruses, including porcine epidemic diarrhea virus (PEDV) and porcine enteric alphacoronavirus (PEAV), is dramatically decreased in ALIX- or TSG101-depleted cells. Furthermore, PEDV entry significantly increases the interaction of ALIX with caveolin-1 (CAV1) and RAB7, which are crucial for viral endocytosis and lysosomal transport, however, does not require TSG101. Interestingly, PEAV not only relies on ALIX to regulate viral endocytosis and lysosomal transport, but also requires TSG101 to regulate macropinocytosis. Besides, ALIX and TSG101 are recruited to the replication sites of PEDV and PEAV where they become localized within the endoplasmic reticulum and virus-induced double-membrane vesicles. PEDV and PEAV replication were significantly inhibited by depletion of ALIX and TSG101 in Vero cells or primary jejunal epithelial cells, indicating that ALIX and TSG101 are crucial for PEDV and PEAV replication. Collectively, these data highlight the dual role of ALIX and TSG101 in the entry and replication of two porcine alphacoronaviruses. Thus, ESCRT proteins could serve as therapeutic targets against two porcine alphacoronaviruses infection.


Assuntos
Alphacoronavirus , Proteínas de Ligação ao Cálcio , Vírus da Diarreia Epidêmica Suína , Animais , Alphacoronavirus/metabolismo , Linhagem Celular , Chlorocebus aethiops , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Células Epiteliais/metabolismo , Vírus da Diarreia Epidêmica Suína/metabolismo , Suínos , Células Vero , Replicação Viral , Proteínas de Ligação ao Cálcio/metabolismo
3.
Commun Biol ; 7(1): 334, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491121

RESUMO

VPS37A, an ESCRT-I complex component, is required for recruiting a subset of ESCRT proteins to the phagophore for autophagosome closure. However, the mechanism by which VPS37A is targeted to the phagophore remains obscure. Here, we demonstrate that the VPS37A N-terminal domain exhibits selective interactions with highly curved membranes, mediated by two membrane-interacting motifs within the disordered regions surrounding its Ubiquitin E2 variant-like (UEVL) domain. Site-directed mutations of residues in these motifs disrupt ESCRT-I localization to the phagophore and result in defective phagophore closure and compromised autophagic flux in vivo, highlighting their essential role during autophagy. In conjunction with the UEVL domain, we postulate that these motifs guide a functional assembly of the ESCRT machinery at the highly curved tip of the phagophore for autophagosome closure. These results advance the notion that the distinctive membrane architecture of the cup-shaped phagophore spatially regulates autophagosome biogenesis.


Assuntos
Autofagossomos , Autofagia , Autofagossomos/metabolismo , Autofagia/fisiologia , Membranas Intracelulares/metabolismo , Endossomos/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo
4.
Development ; 151(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38546617

RESUMO

Abscission is the final step of cytokinesis that allows the physical separation of sister cells through the scission of the cellular membrane. This deformation is driven by ESCRT-III proteins, which can bind membranes and form dynamic helices. A crucial step in abscission is the recruitment of ESCRT-III proteins at the right time and place. Alix is one of the best characterized proteins that recruits ESCRT-III proteins from yeast to mammals. However, recent studies in vivo have revealed that pathways acting independently or redundantly with Alix are also required at abscission sites in different cellular contexts. Here, we show that Lgd acts redundantly with Alix to properly localize ESCRT-III to the abscission site in germline stem cells (GSCs) during Drosophila oogenesis. We further demonstrate that Lgd is phosphorylated at multiple sites by the CycB/Cdk1 kinase. We found that these phosphorylation events potentiate the activity of Shrub, a Drosophila ESCRT-III, during abscission of GSCs. Our study reveals that redundancy between Lgd and Alix, and coordination with the cell cycle kinase Cdk1, confers robust and timely abscission of Drosophila germline stem cells.


Assuntos
Proteínas de Drosophila , Complexos Endossomais de Distribuição Requeridos para Transporte , Animais , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Proteína Quinase CDC2/genética , Citocinese/genética , Células Germinativas/metabolismo , Drosophila/metabolismo , Células-Tronco , Mamíferos/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Ciclina B
5.
Nat Commun ; 15(1): 1949, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38431632

RESUMO

Cell division is completed by the abscission of the intercellular bridge connecting the daughter cells. Abscission requires the polymerization of an ESCRT-III cone close to the midbody to both recruit the microtubule severing enzyme spastin and scission the plasma membrane. Here, we found that the microtubule and the membrane cuts are two separate events that are regulated differently. Using HeLa cells, we uncovered that the F-actin disassembling protein Cofilin-1 controls the disappearance of a transient pool of branched F-actin which is precisely assembled at the tip of the ESCRT-III cone shortly before the microtubule cut. Functionally, Cofilin-1 and Arp2/3-mediated branched F-actin favor abscission by promoting local severing of the microtubules but do not participate later in the membrane scission event. Mechanistically, we propose that branched F-actin functions as a physical barrier that limits ESCRT-III cone elongation and thereby favors stable spastin recruitment. Our work thus reveals that F-actin controls the timely and local disassembly of microtubules required for cytokinetic abscission.


Assuntos
Actinas , Microtúbulos , Humanos , Actinas/metabolismo , Células HeLa , Espastina/metabolismo , Microtúbulos/metabolismo , Citocinese , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Fatores de Despolimerização de Actina/metabolismo
6.
Mol Biol Cell ; 35(4): ar48, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38335450

RESUMO

Nuclear envelope reassembly during the final stages of each mitosis depends on disassembling spindle microtubules without disrupting chromosome separation. This process involves the transient recruitment of the ESCRT-III complex and spastin, a microtubule-severing AAA (ATPases associated with diverse cellular activities) mechanoenzyme, to late-anaphase chromosomes. However, dissecting mechanisms underlying these rapid processes, which can be completed within minutes, has been difficult. Here, we combine fast-acting chemical inhibitors with live-cell imaging and find that spindle microtubules, along with spastin activity, regulate the number and lifetimes of spastin foci at anaphase chromosomes. Unexpectedly, spastin inhibition impedes chromosome separation, but does not alter the anaphase localization dynamics of CHMP4B, an ESCRT-III protein, or increase γ-H2AX foci, a DNA damage marker. We show spastin inhibition increases the frequency of lamin-lined nuclear microtunnels that can include microtubules penetrating the nucleus. Our findings suggest failure to sever spindle microtubules impedes chromosome separation, yet reforming nuclear envelopes can topologically accommodate persistent microtubules ensuring nuclear DNA is not damaged or exposed to cytoplasm.


Assuntos
Anáfase , Microtúbulos , Espastina/metabolismo , Microtúbulos/metabolismo , Cromossomos/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo
7.
J Cell Biol ; 223(5)2024 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-38358349

RESUMO

Different membrane microdomain compositions provide unique environments that can regulate signaling receptor function. We identify microdomains on the endosome membrane of Drosophila endosomes, enriched in lipid-raft or clathrin/ESCRT-0, which are associated with Notch activation by distinct, ligand-independent mechanisms. Transfer of Notch between microdomains is regulated by Deltex and Suppressor of deltex ubiquitin ligases and is limited by a gate-keeper role for ESCRT complexes. Ubiquitination of Notch by Deltex recruits it to the clathrin/ESCRT-0 microdomain and enhances Notch activation by an ADAM10-independent/TRPML-dependent mechanism. This requirement for Deltex is bypassed by the downregulation of ESCRT-III. In contrast, while ESCRT-I depletion also activates Notch, it does so by an ADAM10-dependent/TRPML-independent mechanism and Notch is retained in the lipid raft-like microdomain. In the absence of such endosomal perturbation, different activating Notch mutations also localize to different microdomains and are activated by different mechanisms. Our findings demonstrate the interplay between Notch regulators, endosomal trafficking components, and Notch genetics, which defines membrane locations and activation mechanisms.


Assuntos
Proteínas de Drosophila , Drosophila , Proteínas de Membrana , Receptores Notch , Canais de Potencial de Receptor Transitório , Animais , Proteína ADAM10/metabolismo , Clatrina/metabolismo , Regulação para Baixo , Proteínas de Drosophila/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Endossomos/metabolismo , Receptores Notch/metabolismo , Ubiquitinação , Proteínas de Membrana/metabolismo , Microdomínios da Membrana/metabolismo
8.
Cell Rep ; 43(3): 113818, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38402586

RESUMO

Intricate cerebral cortex formation is orchestrated by the precise behavior and division dynamics of radial glial cells (RGCs). Endocytosis functions in the recycling and remodeling of adherens junctions (AJs) in response to changes in RGC activity and function. Here, we show that conditional disruption of ubiquitin-associated protein 1 (UBAP1), a component of endosomal sorting complex required for transport (ESCRT), causes severe brain dysplasia and prenatal ventriculomegaly. UBAP1 depletion disrupts the AJs and polarity of RGCs, leading to failure of apically directed interkinetic nuclear migration. Accordingly, UBAP1 knockout or knockdown results in reduced proliferation and precocious differentiation of neural progenitor cells. Mechanistically, UBAP1 regulates the expression and surface localization of cell adhesion molecules, and ß-catenin over-expression significantly rescues the phenotypes of Ubap1 knockdown in vivo. Our study reveals a critical physiological role of the ESCRT machinery in cortical neurogenesis by regulating AJs of RGCs.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte , Células Ependimogliais , Feminino , Gravidez , Humanos , Células Ependimogliais/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Ubiquitina/metabolismo , Junções Aderentes/metabolismo , Córtex Cerebral/metabolismo , Neurogênese , Proteínas de Transporte/metabolismo
9.
J Biol Chem ; 300(3): 105715, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309503

RESUMO

NEDD4L is a HECT-type E3 ligase that catalyzes the addition of ubiquitin to intracellular substrates such as the cardiac voltage-gated sodium channel, NaV1.5. The intramolecular interactions of NEDD4L regulate its enzymatic activity which is essential for proteostasis. For NaV1.5, this process is critical as alterations in Na+ current is involved in cardiac diseases including arrhythmias and heart failure. In this study, we perform extensive biochemical and functional analyses that implicate the C2 domain and the first WW-linker (1,2-linker) in the autoregulatory mechanism of NEDD4L. Through in vitro and electrophysiological experiments, the NEDD4L 1,2-linker was determined to be important in substrate ubiquitination of NaV1.5. We establish the preferred sites of ubiquitination of NEDD4L to be in the second WW-linker (2,3-linker). Interestingly, NEDD4L ubiquitinates the cytoplasmic linker between the first and second transmembrane domains of the channel (DI-DII) of NaV1.5. Moreover, we design a genetically encoded modulator of Nav1.5 that achieves Na+ current reduction using the NEDD4L HECT domain as cargo of a NaV1.5-binding nanobody. These investigations elucidate the mechanisms regulating the NEDD4 family and furnish a new molecular framework for understanding NaV1.5 ubiquitination.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte , Canal de Sódio Disparado por Voltagem NAV1.5 , Ubiquitina-Proteína Ligases Nedd4 , Ubiquitinação , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Ubiquitina-Proteína Ligases Nedd4/genética , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Ubiquitina/metabolismo , Humanos , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Células HEK293
10.
Bioessays ; 46(4): e2300230, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38412391

RESUMO

In circulation, T cells are spherical with selectin enriched dynamic microvilli protruding from the surface. Following extravasation, these microvilli serve another role, continuously surveying their environment for antigen in the form of peptide-MHC (pMHC) expressed on the surface of antigen presenting cells (APCs). Upon recognition of their cognate pMHC, the microvilli are initially stabilized and then flatten into F-actin dependent microclusters as the T cell spreads over the APC. Within 1-5 min, clathrin is recruited by the ESCRT-0 component Hrs to mediate release of T cell receptor (TCR) loaded vesicles directly from the plasma membrane by clathrin and ESCRT-mediated ectocytosis (CEME). After 5-10 min, Hrs is displaced by the endocytic clathrin adaptor epsin-1 to induce clathrin-mediated trans-endocytosis (CMTE) of TCR-pMHC conjugates. Here we discuss some of the functional properties of the clathrin machinery which enables it to control these topologically opposite modes of membrane transfer at the immunological synapse, and how this might be regulated during T cell activation.


Assuntos
Clatrina , Linfócitos T , Clatrina/metabolismo , Células Apresentadoras de Antígenos/metabolismo , Receptores de Antígenos de Linfócitos T , Endocitose/fisiologia , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Comunicação
11.
Nat Commun ; 15(1): 1021, 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38310114

RESUMO

The epidermal growth factor receptor (EGFR) plays important roles in multiple cellular events, including growth, differentiation, and motility. A major mechanism of downregulating EGFR function involves its endocytic transport to the lysosome. Sorting of proteins into intracellular pathways involves cargo adaptors recognizing sorting signals on cargo proteins. A dileucine-based sorting signal has been identified previously for the sorting of endosomal EGFR to the lysosome, but a cargo adaptor that recognizes this signal remains unknown. Here, we find that phosphoglycerate kinase 1 (PGK1) is recruited to endosomal membrane upon its phosphorylation, where it binds to the dileucine sorting signal in EGFR to promote the lysosomal transport of this receptor. We also elucidate two mechanisms that act in concert to promote PGK1 recruitment to endosomal membrane, a lipid-based mechanism that involves phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] and a protein-based mechanism that involves hepatocyte growth factor receptor substrate (Hrs). These findings reveal an unexpected function for a metabolic enzyme and advance the mechanistic understanding of how EGFR is transported to the lysosome.


Assuntos
Receptores ErbB , Fosfoglicerato Quinase , Fosfoglicerato Quinase/metabolismo , Receptores ErbB/metabolismo , Endossomos/metabolismo , Proteínas/metabolismo , Lisossomos/metabolismo , Transporte Proteico/fisiologia , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo
12.
mBio ; 15(3): e0033524, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38380930

RESUMO

Endosomal sorting complexes required for transport (ESCRT) play key roles in protein sorting between membrane-bounded compartments of eukaryotic cells. Homologs of many ESCRT components are identifiable in various groups of archaea, especially in Asgardarchaeota, the archaeal phylum that is currently considered to include the closest relatives of eukaryotes, but not in bacteria. We performed a comprehensive search for ESCRT protein homologs in archaea and reconstructed ESCRT evolution using the phylogenetic tree of Vps4 ATPase (ESCRT IV) as a scaffold and using sensitive protein sequence analysis and comparison of structural models to identify previously unknown ESCRT proteins. Several distinct groups of ESCRT systems in archaea outside of Asgard were identified, including proteins structurally similar to ESCRT-I and ESCRT-II, and several other domains involved in protein sorting in eukaryotes, suggesting an early origin of these components. Additionally, distant homologs of CdvA proteins were identified in Thermoproteales which are likely components of the uncharacterized cell division system in these archaea. We propose an evolutionary scenario for the origin of eukaryotic and Asgard ESCRT complexes from ancestral building blocks, namely, the Vps4 ATPase, ESCRT-III components, wH (winged helix-turn-helix fold) and possibly also coiled-coil, and Vps28-like domains. The last archaeal common ancestor likely encompassed a complex ESCRT system that was involved in protein sorting. Subsequent evolution involved either simplification, as in the TACK superphylum, where ESCRT was co-opted for cell division, or complexification as in Asgardarchaeota. In Asgardarchaeota, the connection between ESCRT and the ubiquitin system that was previously considered a eukaryotic signature was already established.IMPORTANCEAll eukaryotic cells possess complex intracellular membrane organization. Endosomal sorting complexes required for transport (ESCRT) play a central role in membrane remodeling which is essential for cellular functionality in eukaryotes. Recently, it has been shown that Asgard archaea, the archaeal phylum that includes the closest known relatives of eukaryotes, encode homologs of many components of the ESCRT systems. We employed protein sequence and structure comparisons to reconstruct the evolution of ESCRT systems in archaea and identified several previously unknown homologs of ESCRT subunits, some of which can be predicted to participate in cell division. The results of this reconstruction indicate that the last archaeal common ancestor already encoded a complex ESCRT system that was involved in protein sorting. In Asgard archaea, ESCRT systems evolved toward greater complexity, and in particular, the connection between ESCRT and the ubiquitin system that was previously considered a eukaryotic signature was established.


Assuntos
Archaea , Complexos Endossomais de Distribuição Requeridos para Transporte , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Filogenia , Sequência de Aminoácidos , Archaea/metabolismo , Adenosina Trifosfatases/metabolismo , Ubiquitinas/metabolismo
13.
J Exp Bot ; 75(8): 2372-2384, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38206130

RESUMO

Charged multivesicular protein 1 (CHMP1) is a member of the endosomal sorting complex required for transport-III (ESCRT-III) complex that targets membrane localized signaling receptors to intralumenal vesicles in the multivesicular body of the endosome and eventually to the lysosome for degradation. Although CHMP1 plays roles in various plant growth and development processes, little is known about its function in wheat. In this study, we systematically analysed the members of the ESCRT-III complex in wheat (Triticum aestivum) and found that their orthologs were highly conserved in eukaryotic evolution. We identified CHMP1 homologous genes, TaSAL1s, and found that they were constitutively expressed in wheat tissues and essential for plant reproduction. Subcellular localization assays showed these proteins aggregated with and closely associated with the endoplasmic reticulum when ectopically expressed in tobacco leaves. We also found these proteins were toxic and caused leaf death. A genetic and reciprocal cross analysis revealed that TaSAL1 leads to defects in male gametophyte biogenesis. Moreover, phenotypic and metabolomic analysis showed that TaSAL1 may regulate tillering and heading date through phytohormone pathways. Overall, our results highlight the role of CHMP1 in wheat, particularly in male gametophyte biogenesis, with implications for improving plant growth and developing new strategies for plant breeding and genetic engineering.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte , Triticum , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Triticum/genética , Melhoramento Vegetal , Endossomos/metabolismo , Pólen/genética
14.
Infect Immun ; 92(2): e0028923, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38174929

RESUMO

Brucella species are Gram-negative intracellular bacterial pathogens that cause the worldwide zoonotic disease brucellosis. Brucella can infect many mammals, including humans and domestic and wild animals. Brucella manipulates various host cellular processes to invade and multiply in professional and non-professional phagocytic cells. However, the host targets and their modulation by Brucella to facilitate the infection process remain obscure. Here, we report that the host ubiquitin-specific protease, USP8, negatively regulates the invasion of Brucella into macrophages through the plasma membrane receptor, CXCR4. Upon silencing or chemical inhibition of USP8, the membrane localization of the CXCR4 receptor was enriched, which augmented the invasion of Brucella into macrophages. Activation of USP8 through chemical inhibition of 14-3-3 protein affected the invasion of Brucella into macrophages. Brucella suppressed the expression of Usp8 at its early stage of infection in the infected macrophages. Furthermore, we found that only live Brucella could negatively regulate the expression of Usp8, suggesting the role of secreted effector protein of Brucella in modulating the gene expression. Subsequent studies revealed that the Brucella effector protein, TIR-domain containing protein from Brucella, TcpB, plays a significant role in downregulating the expression of Usp8 by targeting the cyclic-AMP response element-binding protein pathway. Treatment of mice with USP8 inhibitor resulted in enhanced survival of B. melitensis, whereas mice treated with CXCR4 or 14-3-3 antagonists showed a diminished bacterial load. Our experimental data demonstrate a novel role of Usp8 in the host defense against microbial intrusion. The present study provides insights into the microbial subversion of host defenses, and this information may ultimately help to develop novel therapeutic interventions for infectious diseases.


Assuntos
Brucella melitensis , Brucella , Brucelose , Animais , Humanos , Camundongos , Proteases Específicas de Ubiquitina/metabolismo , Macrófagos/microbiologia , Brucelose/microbiologia , Proteínas de Bactérias/genética , Mamíferos , Endopeptidases/metabolismo , Ubiquitina Tiolesterase/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo
15.
J Virol ; 98(2): e0190023, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38289107

RESUMO

The endosomal sorting complex required for transport (ESCRT) is a conserved protein machine mediating membrane remodeling and scission. In the context of viral infection, different components of the ESCRT-III complex, which serve as the core machinery to catalyze membrane fission, are involved in diverse viruses' entry, replication, and/or budding. However, the interplay between ESCRT-III and viral factors in the virus life cycle, especially for that of large enveloped DNA viruses, is largely unknown. Recently, the ESCRT-III components Vps2B, Vps20, Vps24, Snf7, Vps46, and Vps60 were determined for entry and/or egress of the baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV). Here, we identified the final three ESCRT-III components Chm7, Ist1, and Vps2A of Spodoptera frugiperda. Overexpression of the dominant-negative forms of these proteins or RNAi downregulation of their transcripts significantly reduced infectious budded viruses (BVs) production of AcMNPV. Quantitative PCR together with confocal and transmission electron microscopy analysis revealed that these proteins were required for internalization and trafficking of BV during entry and egress of nucleocapsids. In infected Sf9 cells, nine ESCRT-III components were distributed on the nuclear envelope and plasma membrane, and except for Chm7, the other components were also localized to the intranuclear ring zone. Y2H and BiFC analysis revealed that 42 out of 64 BV-related proteins including 35 BV structural proteins and 7 non-BV structural proteins interacted with single or multiple ESCRT-III components. By further mapping the interactome of 64 BV-related proteins, we established the interaction networks of ESCRT-III and the viral protein complexes involved in BV entry and egress.IMPORTANCEFrom archaea to eukaryotes, the endosomal sorting complex required for transport (ESCRT)-III complex is hijacked by many enveloped and nonenveloped DNA or RNA viruses for efficient replication. However, the mechanism of ESCRT-III recruitment, especially for that of large enveloped DNA viruses, remains elusive. Recently, we found the ESCRT-III components Vps2B, Vps20, Vps24, Snf7, Vps46, and Vps60 are necessary for the entry and/or egress of budded viruses (BVs) of Autographa californica multiple nucleopolyhedrovirus. Here, we demonstrated that the other three ESCRT-III components Chm7, Ist1, and Vps2A play similar roles in BV infection. By determining the subcellular localization of ESCRT-III components in infected cells and mapping the interaction of nine ESCRT-III components and 64 BV-related proteins, we built the interaction networks of ESCRT-III and the viral protein complexes involved in BV entry and egress. These studies provide a fundamental basis for understanding the mechanism of the ESCRT-mediated membrane remodeling for replication of baculoviruses.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte , Interações entre Hospedeiro e Microrganismos , Nucleopoliedrovírus , Spodoptera , Proteínas Virais , Internalização do Vírus , Liberação de Vírus , Animais , Complexos Endossomais de Distribuição Requeridos para Transporte/química , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/ultraestrutura , Nucleopoliedrovírus/metabolismo , Nucleopoliedrovírus/fisiologia , Nucleopoliedrovírus/ultraestrutura , Spodoptera/citologia , Spodoptera/metabolismo , Spodoptera/ultraestrutura , Spodoptera/virologia , Proteínas Virais/química , Proteínas Virais/metabolismo , Proteínas Virais/ultraestrutura , Replicação Viral , Transporte Biológico , Células Sf9
16.
J Mol Med (Berl) ; 102(3): 287-311, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38183492

RESUMO

Lysosomes function as critical signaling hubs that govern essential enzyme complexes. LGALS proteins (LGALS3, LGALS8, and LGALS9) are integral to the endomembrane damage response. If ESCRT fails to rectify damage, LGALS-mediated ubiquitination occurs, recruiting autophagy receptors (CALCOCO2, TRIM16, and SQSTM1) and VCP/p97 complex containing UBXN6, PLAA, and YOD1, initiating selective autophagy. Lysosome replenishment through biogenesis is regulated by TFEB. LGALS3 interacts with TFRC and TRIM16, aiding ESCRT-mediated repair and autophagy-mediated removal of damaged lysosomes. LGALS8 inhibits MTOR and activates TFEB for ATG and lysosomal gene transcription. LGALS9 inhibits USP9X, activates PRKAA2, MAP3K7, ubiquitination, and autophagy. Conjugation of ATG8 to single membranes (CASM) initiates damage repair mediated by ATP6V1A, ATG16L1, ATG12, ATG5, ATG3, and TECPR1. ATG8ylation or CASM activates the MERIT system (ESCRT-mediated repair, autophagy-mediated clearance, MCOLN1 activation, Ca2+ release, RRAG-GTPase regulation, MTOR modulation, TFEB activation, and activation of GTPase IRGM). Annexins ANAX1 and ANAX2 aid damage repair. Stress granules stabilize damaged membranes, recruiting FLCN-FNIP1/2, G3BP1, and NUFIP1 to inhibit MTOR and activate TFEB. Lysosomes coordinate the synergistic response to endomembrane damage and are vital for innate and adaptive immunity. Future research should unveil the collaborative actions of ATG proteins, LGALSs, TRIMs, autophagy receptors, and lysosomal proteins in lysosomal damage response.


Assuntos
DNA Helicases , Galectina 3 , Galectina 3/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Autofagia/genética , Serina-Treonina Quinases TOR/metabolismo , Lisossomos/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo
17.
Autophagy ; 20(2): 448-450, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37876292

RESUMO

ATG5 plays a pivotal role in membrane Atg8ylation, influencing downstream processes encompassing canonical autophagy and noncanonical processes. Remarkably, genetic ablation of ATG5 in myeloid cells leads to an exacerbated pathological state in murine models of tuberculosis, characterized by an early surge in mortality much more severe when compared to the depletion of other components involved in Atg8ylation or canonical autophagy. This study shows that in the absence of ATG5, but not other core canonical autophagy factors, endolysosomal organelles display a lysosomal hypersensitivity phenotype when subjected to damage. This is in part due to a compromised recruitment of ESCRT proteins to lysosomes in need of repair. Mechanistically, in the absence of ATG5, the ESCRT protein PDCD6IP/ALIX is sequestered by the alternative conjugate ATG12-ATG3, contributing to excessive exocytic processes while not being available for lysosomal repair. Specifically, this condition increases secretion of extracellular vesicles and particles, and leads to excessive degranulation in neutrophils. Our findings uncover unique functions of ATG5 outside of the autophagy and Atg8ylation paradigm. This finding is of in vivo relevance for tuberculosis pathogenesis as modeled in mice.Abbreviations: Atg5: autophagy related 5; ESCRT: endosomal sorting complex required for transport; EVPs: extracellular vesicles and particles; FPR1: formyl peptide receptor 1; LyHYP: lysosomal hypersensitivity phenotype; LysoIP: lysosome immunopurification; Mtb: Mycobacterium tuberculosis; ORF3a: open reading frame 3a protein; PDCD6IP/ALIX: programmed cell death 6 interacting protein; SARS-CoV-2: severe acute respiratory syndrome coronavirus 2, TFEB: transcription factor EB.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Animais , Camundongos , Autofagia/fisiologia , Proteína 5 Relacionada à Autofagia/metabolismo , Tuberculose/microbiologia , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Lisossomos/metabolismo
18.
Autophagy ; 20(2): 349-364, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37733908

RESUMO

The VPS37A gene encodes a subunit of the endosomal sorting complex required for transport (ESCRT)-I complex that is frequently lost in a wide variety of human solid cancers. We have previously demonstrated the role of VPS37A in directing the ESCRT membrane scission machinery to seal the phagophore for autophagosome completion. Here, we report that VPS37A-deficient cells exhibit an accumulation of the apoptotic initiator CASP8 (caspase 8) on the phagophore and are primed to undergo rapid apoptosis through the intracellular death-inducing signaling complex (iDISC)-mediated CASP8 activation upon exposure to endoplasmic reticulum (ER) stress. Using CRISPR-Cas9 gene editing and comparative transcriptome analysis, we identified the ATF4-mediated stress response pathway as a crucial mediator to elicit iDISC-mediated apoptosis following the inhibition of autophagosome closure. Notably, ATF4-mediated iDISC activation occurred independently of the death receptor TNFRSF10B/DR5 upregulation but required the pro-apoptotic transcriptional factor DDIT3/CHOP to enhance the mitochondrial amplification pathway for full-activation of CASP8 in VPS37A-deficient cells stimulated with ER stress inducers. Our analysis also revealed the upregulation of NFKB/NF-kB signaling as a potential mechanism responsible for restraining iDISC activation and promoting cell survival upon VPS37A depletion. These findings have important implications for the future development of new strategies to treat human cancers, especially those with VPS37A loss.Abbreviations: ATG: autophagy related; BMS: BMS-345541; CASP: caspase; CHMP: charged multivesicular body protein; DKO: double knockout; Dox: doxycycline; ER: endoplasmic reticulum; ESCRT: endosomal sorting complex required for transport; gRNA: guide RNA; GSEA: gene set enrichment analysis; GSK157: GSK2656157; iDISC: intracellular death-inducing signaling complex; IKK: inhibitor of NFKB kinase; IPA: ingenuity pathway analysis; KO: knockout; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; NFKB/NF-kB: nuclear factor kappa B; OZ: 5Z-7-oxozeaenol; RNA-seq: RNA sequencing; UPR: unfolded protein response; TFT: transcription factor target; THG: thapsigargin; TUN: tunicamycin; VPS: vacuolar protein sorting.


Assuntos
NF-kappa B , Neoplasias , Humanos , Caspase 8/genética , NF-kappa B/metabolismo , Autofagia , RNA Guia de Sistemas CRISPR-Cas , Apoptose/genética , Estresse do Retículo Endoplasmático , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo
19.
FEBS Lett ; 598(1): 48-58, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37857501

RESUMO

The discovery of microautophagy, the direct engulfment of cytoplasmic material by the lysosome, dates back to 1966 in a morphological study of mammalian cells by Christian de Duve. Since then, studies on microautophagy have shifted toward the elucidation of the physiological significance of the process. However, in contrast to macroautophagy, studies on the molecular mechanisms of microautophagy have been limited. Only recent studies revealed that ATG proteins involved in macroautophagy are also operative in several types of microautophagy and that ESCRT proteins, responsible for the multivesicular body pathway, play a central role in most microautophagy processes. In this review, we summarize our current knowledge on the function of ATG and ESCRT proteins in microautophagy.


Assuntos
Autofagia , Microautofagia , Animais , Autofagia/fisiologia , Lisossomos/metabolismo , Citosol/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Mamíferos/metabolismo
20.
Traffic ; 25(1): e12921, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37926552

RESUMO

ESCRTs (Endosomal Sorting Complex Required for Transports) are a modular set of protein complexes with membrane remodeling activities that include the formation and release of intraluminal vesicles (ILVs) to generate multivesicular endosomes. While most of the 12 ESCRT-III proteins are known to play roles in ILV formation, IST1 has been associated with a wider range of endosomal remodeling events. Here, we extend previous studies of IST1 function in endosomal trafficking and confirm that IST1, along with its binding partner CHMP1B, contributes to scission of early endosomal carriers. Functionally, depleting IST1 impaired delivery of transferrin receptor from early/sorting endosomes to the endocytic recycling compartment and instead increased its rapid recycling to the plasma membrane via peripheral endosomes enriched in the clathrin adaptor AP-1. IST1 is also important for export of mannose 6-phosphate receptor from early/sorting endosomes. Examination of IST1 binding partners on endosomes revealed that IST1 interacts with the MIT domain-containing sorting nexin SNX15, a protein previously reported to regulate endosomal recycling. Our kinetic and spatial analyses establish that SNX15 and IST1 occupy a clathrin-containing subdomain on the endosomal perimeter distinct from those previously implicated in cargo retrieval or degradation. Using live-cell microscopy, we see that SNX15 and CHMP1B alternately recruit IST1 to this subdomain or the base of endosomal tubules. These findings indicate that IST1 contributes to a subset of recycling pathways from the early/sorting endosome.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte , Endossomos , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Transporte Proteico , Endossomos/metabolismo , Corpos Multivesiculares/metabolismo , Transporte Biológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...